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Abstract

Using molecular dynamics simulations, the thermal conductivity of silica-based crystals is found to be a result of two

independent thermal transport mechanisms associated with atomic structure. The first mechanism is temperature

independent, produces a thermal conductivity on the order of 1 W/mK, and is related to short length scale behavior. It

is governed by the silicon coordination, which is unique to a given structure. The second mechanism is temperature

dependent and is related to long length scale behavior. At a temperature of 300 K, the associated thermal conductivity

ranges from 9 W/mK for the c-direction of quartz to 0.4 W/mK for zeolite-A. This mechanism is controlled by the

atomic bond lengths and angles. Complex unit cells, notably cage structures, can distort the SiO4 tetrahedra, leading to

a shortening of the phonon mean free path and a spatial localization of energy. The results suggest that an alternative

to the available minimum thermal conductivity model for amorphous materials is needed for the crystalline state.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

The porous crystals are a diverse group of materials

characterized by large unit cells andAngstrom sized pores

and channels. Among these are the zeolites [1], skutteru-

dites [2], fullerenes [3], and metal organic frameworks

[4,5]. The size of the pores is on the same scale as the

dimensions of many atoms and molecules, leading to the

use of porous crystals as molecular sieves and catalysts,

and for gas storage applications. They typically have

thermal conductivities on the order of 1–10 W/mK, with

reported values as low as 0.4 W/mK [6,7]. Only recently

has the systematic design of porous crystals begun to be

realized [8,9]. Current efforts are geared towards molec-

ular transport and storage applications. There is also

interest in the design of porous crystals with very low

thermal conductivities for applications as rigid insulators
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and to protect stored gases from ambient temperature

fluctuations. As a first step towards design for thermal

properties, the mechanisms by which heat is transferred

in these materials must be understood. Here, this goal

is pursued in the context of the zeolites.

The zeolites are a subset of the silica structures,

materials built from SiO4 tetrahedra. While there has

been a considerable amount of experimental and theo-

retical work done to investigate the structure of zeolites

and the transport of molecules through them [10–12],

there has been little done to describe the nature of the

thermal transport in these materials. They are generally

synthesized as powders of micron sized crystals (to

minimize the length of diffusion paths in transport

applications), from which it is difficult to extract bulk

phase properties. Even then, it is often only possible to

make single crystals with sub-millimeter dimensions,

making direct property measurements difficult. Chal-

lenges in the theoretical analysis of zeolites are centered

around the complex unit cells, which can contain hun-

dreds of atoms. Thermal transport mechanisms over a

number of length scales must be resolved.
ed.
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Nomenclature

A constant, BKS potential parameter

b; c BKS potential parameter

B constant

E energy (kinetic and potential)

kB Boltzmann constant, 1.3806· 10�23 J/K

k thermal conductivity

L simulation cell linear dimension

N number of atoms

q atomic charge

q heat current vector

r inter-particle separation

t time

T temperature, K

U potential energy

V volume

Greek symbols

a Wolf method parameter

� energy scale

q density

r length scale

s time constant

x angular frequency

Subscripts

ac acoustic

CP Cahill–Pohl

i; j summation index, particle label

lg long range

nn nearest neighbor

o self (referring to a particle or cage)

op optical

sh short range
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In dielectric solids (e.g., the silica structures), heat

transfer is realized through the transport of phonons,

quanta of energy associated with lattice vibrations.

Many of the tools available for modeling heat transfer in

such materials at the atomic level, such as the Boltz-

mann transport equation (BTE) and kinetic theory, rely

on calculations done in the normal mode (phonon)

coordinate space. The models often require the predic-

tions to be fit to experimental data and are thus of

limited use for new or complex materials. We note two

recent phonon-based approaches that do not require the

use of fitting parameters: (1) Omini and Sparavigna

[13,14] have developed methods by which the lattice

thermal conductivity can be predicted using an iterative

solution of the BTE and detailed knowledge of the

phonon dispersion. The calculations are formidable in

terms of complexity and required computation time, but

produce good agreement with experimental data. (2)

McGaughey and Kaviany [15] have used phonon dis-

persion relations and relaxation times predicted from

molecular dynamics (MD) simulations to predict the

thermal conductivity of the face centered cubic (fcc)

Lennard-Jones (LJ) argon crystal within the BTE single

mode relaxation time formulation. While significant

computation time is required, the implementation of this

method into an existing MD code is straightforward.

Good agreement is found with predictions from the MD

simulations based on the Green–Kubo method.

While the modeling of a system as a set of harmonic

(or anharmonic) oscillators (i.e., phonons) simplifies

analyses, it also makes it difficult to relate the results

back to the real coordinates of the system (i.e., the

positions of the atoms). In trying to link design and
analysis at the atomic level, it becomes apparent that the

major difficulty is that design is done in real space, while

analysis is done in phonon space. To proceed, one must

either move the analysis to real space, or the design to

phonon space.

Molecular dynamics simulations are an ideal tool for

pursuing the analysis in real space. In Part I of this series

of two papers [16], a method has been presented by

which MD can be used to understand how the structure

and thermal transport in simple LJ argon systems are

related. Here, in Part II, the analysis techniques are

extended to the silica structures. The range of materials

available allows for further elucidation of the relation-

ship between atomic structure and thermal conductivity.

The silica structures and the MD procedures are

described. The thermal conductivity decomposition

introduced in Part I is extended to include optical pho-

nons, which result from the multi-atom unit cells. Using

energy correlation functions, the geometry of the crystal

structures, and dynamical data from the simulations, the

thermal conductivity trends within and between the

structures are examined. Two independent mechanisms

that limit the thermal conductivity are identified, and

used to propose structural metrics for the design of new,

low thermal conductivity materials.
2. Silica structures

Molecular dynamics simulations of quartz, amor-

phous silica, and the zeolites sodalite (SOD), faujasite

(FAU) and zeolite-A (LTA) have been performed. Ini-

tial coordinates for the crystal structures are taken from



A.J.H. McGaughey, M. Kaviany / International Journal of Heat and Mass Transfer 47 (2004) 1799–1816 1801
Wycoff [17]. Typically, the zeolite frameworks contain

aluminum atoms in place of some of the silicon atoms,

and the structures are filled with non-framework anions

and diffusing species such as water. Here, the focus is

on all silicon–oxygen frameworks, also known as sili-

ceous zeolites. All of the structures, which are built from

SiO4 tetrahedra, are shown in Fig. 1.

One length scale up from the SiO4 tetrahedron, zeo-

lites can be described by secondary building units

(SBUs), which are named based on their geometry. For

example, a 6R SBU is a ring structure made from six

oxygen atoms and six silicon atoms. The three zeolites

studied are built from the sodalite cage, which can be

constructed with 4R and 6R SBUs. In SOD, the sodalite

cages are directly joined on the 4R rings to form a cubic

arrangement of cages. In FAU, the sodalite cages are

joined by oxygen bridges on the 6R rings, resulting in

a diamond arrangement of cages. LTA is a cubic

arrangement of sodalite cages joined by oxygen bridges

on the 4R rings. The atoms in each of the silica struc-

tures have a unique environment. The structures can be

characterized by the distortion of individual tetrahedra

and by considering the number of independent paths

that lead away from a given atom. Such geometric
Fig. 1. Silica structure building blocks and m
descriptions will be used in the subsequent thermal

conductivity analysis.
3. Simulation procedures

Other than as noted in this section, the simulation

procedures are the same as those used in Part I for LJ

argon. Some points are repeated for clarity.

The atomic interactions are modeled with the van

Beest–Kramer–van Santen (BKS) interatomic potential

[18,19], where the potential energy Uij between atoms i
and j is given by

Uij ¼
qiqj
rij

þ Aij expð�bijrijÞ �
cij
r6ij

; ð1Þ

where q is an atomic charge, A, b, and c are constants

specified by the types of atoms i and j (either oxygen or

silicon), and rij is the distance between atoms i and j.
The BKS potential has been found to reproduce the

static structure of dense silica phases well, although

the predicted Si–O–Si angles in quartz are 6� larger

than the experimental value. The agreement with the

experimental dynamical properties (e.g., the infrared
aterials studied in the MD simulations.



Table 1

Crystal structure parameters

Structure Unit cell

(�AA)

Atoms/

unit cell

N q (kg/m3)

Quartz 4.91(a),
5.52(c)

9 576 2589

SOD 8.88 36 288 1705

FAU 24.72 576 576 1266

LTA 12.05 72 576 1368

Dimensions and density are at T ¼ 300 K.
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spectrum) is good at high frequencies, but decreases at

lower frequencies [20]. The shortcomings of the BKS

potential are most likely a result of its two-body nature,

which cannot explicitly model the bond angles. While a

three-body term would help in this regard, it would also

significantly increase the required computation time,

which is already long.

The electrostatic interactions are modeled using the

Wolf method [21], where the first term in Eq. (1) is

calculated as

qiqj
rij

’ qiqjerfcðarijÞ
rij

: ð2Þ

The use of the Wolf method instead of the traditional

Ewald sum is advantageous in that it significantly re-

duces the required computation time. The Wolf method

is essentially equivalent to ignoring the long range elec-

trostatic interactions in the Ewald sum. The Wolf

method is successful because it forces there to be zero net

charge within the volume bounded by the cutoff radius.

When the full Ewald sum was used in the current simu-

lations, the long range force and energy contributions

were on the order of one percent of the short range terms.

This type of behavior has been reported previously, and

is a result of a suitable selection of a [22,23]. The

parameter a provides the damping necessary to make the

electrostatic interaction short range and must be speci-

fied. Demontis et al. [24] suggest choosing a value of 4=L,
where L is the size of the simulation cell. They show that

this value gives the closest agreement with the full Ewald

sum for a range of crystals, including some zeolites. In

the current simulations, a constant value of a is used so

that the interatomic potential is the same for each of the

materials. A value of 0.223 �AA�1 is chosen, which corre-

sponds to a typical 4=L for the SOD structure.

All reported data correspond to simulations in the

NVE (constant mass, volume and energy) ensemble. The

time step used is 0.905 fs (the smallest time scale of

interest is on the order of 15 of these time steps) and the

simulations are run at zero pressure. The temperatures

considered are between 100 and 350 K in increments of

50 K. The interactions are truncated and shifted at a

radius that is one half of the shortest side length of the

simulation cell (which is cubic for all the materials ex-

cept quartz), so as to include as many atoms as possible

in the dynamics.

Specifics of the simulations for each of the four

crystals are given in Table 1, including data specific to a

temperature of 300 K. In the table, N is the number of

atoms in the simulation cell and q is density. In the

determination of the zero pressure cell size for quartz,

the pressure was independently controlled in three

orthogonal directions to allow for the proper relaxation

of the non-cubic unit cell. For the zeolites and the

amorphous phases, the ratio of the three side lengths

was fixed at unity.
An amorphous silica phase is generated by heating

the quartz crystal until it is a liquid, waiting until any

memory of its initial configuration has been lost, and

then quenching back to the solid phase. In the liquid

state, the atoms can get very close together. The BKS

potential is not able to handle the resulting interactions

as it does not go to positive infinity as the atomic sep-

aration goes to zero for the Si–O and O–O pairs. To

force this to happen, a 24-6 LJ potential is added to the

BKS potential [25]. The implemented potential for

amorphous silica is given by

Uij ¼
qiqjerfcðarijÞ

rij
þ Aij expð�bijrijÞ �

cij
r6ij

þ 4�ij
rij

rij

� �24
"

� rij

rij

� �6
#
: ð3Þ

The values of �, an energy scale, and r, a length scale,

are taken from [25]. The effect of the new terms is

minimal around and beyond the equilibrium separation

distance. While use of the modified potential is crucial in

the liquid phase, it is also important to use it in the

resulting amorphous phase. There are often a few places

in the structure where the atoms are close enough to

need the extra terms to prevent non-physical behavior.

The nature of the MD quench has a significant effect

on the final amorphous structure [26]. If it is too fast,

many atoms may not have the proper coordination (two

for oxygen and four for silicon). The density of amor-

phous silica at room temperature is 2220 kg/m3 [27].

However, the potential functions available typically

generate a structure in tension at a pressure of 2–3 GPa

at this density. The equilibrium, zero pressure density

found by relaxing from the experimental density is typ-

ically around 2350 kg/m3 [28]. To be consistent with the

crystal simulations, the zero pressure state is used here.

The following procedure is used to generate the

amorphous phase. It is based on the recommendations

of previous reports [26,29,30] and observations from the

current investigation. The cell size is initially fixed so

that the density is 2200 kg/m3. A 576 atom sample of

quartz is heated to a temperature of 104 K and run in the

NVT (constant mass, volume and temperature) ensemble

for 104 time steps. The system is then quenched at a rate



Table 2

Amorphous silica structure parameters

Structure q (kg/m3) Si coordination

(%)

O coordination

(%)

AS1 2338 99.7 99.5

AS2 2326 99.5 99.5

AS3 2364 99.5 100

There are 576 atoms in each structure. The density is at zero

pressure and T ¼ 300 K.
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of 3.63· 1012 K/s to a temperature of 200 K (this cor-

responds to 2.98 · 106 time steps). This length of time is

required to establish a phase in which over 99% of the

atoms consistently have the proper coordination. The

system is then relaxed to the zero-pressure condition.

Characteristics of three such amorphous phases are

given in Table 2. Thermal conductivities predicted from

the three structures will be compared to check if they

are truly disordered.

The thermal conductivity, k, is determined using the

Green-Kubo approach, which predicts that for an iso-

tropic material [31],

k ¼ 1

kBVT 2

Z 1

0

hqðtÞ � qð0Þi
3

dt; ð4Þ

where kB is the Boltzmann constant, V is the volume of

the simulation cell, T is temperature, q is the heat current

vector, t is time, and hqðtÞ � qð0Þi is the heat current

autocorrelation function (HCACF). This method relates

the dissipation of thermal fluctuations in an equilibrium

system to its thermal conductivity. Further detail is given

in Section 2 of Part I. In quartz, which is anisotropic, the

directionally dependent thermal conductivities are ob-

tained by considering the appropriate components of the

heat current vector, and then performing the autocorre-

lation. Due to the strongly covalent silicon-oxygen

bonds, the electronic component of the thermal con-

ductivity is assumed negligible.

Five independent simulations (differentiated by ran-

dom initial velocities so as to get a good sampling of the

associated phase space [32]) are performed for each

temperature and structure of interest, and the HCACFs

are averaged before proceeding with the analysis. For

quartz at a temperature of 100 K, 10 independent simu-

lations are necessary to obtain a good average due to the

long convergence times in both the a- and c-directions.
4. Results and analysis

4.1. Heat current autocorrelation function

In the LJ fcc argon crystal the HCACF decays

monotonically [16,33,34]. Small oscillations can be

attributed to the periodic boundary conditions. In other

materials, such as b-silicon carbide [32] and diamond
[35], larger oscillations are present, but their magnitudes

are small compared to the total value of the HCACF. In

such cases, the thermal conductivity, which is related to

the converged value of the integral of the HCACF

through Eq. (4), can be specified using different ap-

proaches. These include a direct specification of the

converged value of the integral, the first dip method [32],

and the fit of the sum of two exponential functions to the

HCACF and subsequent analytical integration [16,35].

The HCACFs of the silica structures do not decay

monotonically. As shown in Fig. 2(a) and (b), for

quartz(a) and quartz(c) at temperatures of 250 and 200

K, respectively, there are large oscillations in the

HCACF. Similar oscillations have been attributed to the

relative motion of bonded atoms with different masses

[35]. However, such behavior has also been observed in

an all germanium clathrate structure [36]. This suggests

the more general explanation that the oscillations are a

result of optical phonons. The first dip and exponential

fit methods are not suitable for determining the thermal

conductivity. Even the direct specification of the integral

in Eq. (4) is not trivial. Noise in the HCACF can result

in no obvious convergence region.

We propose the following scheme for the direct spec-

ification of the thermal conductivity. First, the integral is

averaged in overlapping blocks of 2500 time steps. The

resulting curves related to Fig. 2(a) and (b) are shown in

Fig. 2(c) and (d), along with the raw data. When the

convergence is clear [Fig. 2(c)], a region of at least 5000

time steps is chosen over which the integral is deemed to

have a constant value. The integral is averaged over this

region, and this value is used to determine the thermal

conductivity. When the convergence is not clear [Fig.

2(d)], we have observed that the oscillations reach a

minimum (i.e., a neck) before the divergence begins.

Through comparison to the cases where the integral

clearly converges, it is found that the HCACF function

beyond this point does not make a significant contribu-

tion to the integral. An average of the integral is taken

over 1000 time steps around the neck, and this is the value

used in the specification of the thermal conductivity.

4.2. Thermal conductivity decomposition

Consistent results have been obtained using the direct

specification method for predicting the thermal con-

ductivity. To allow for further analysis, the thermal

conductivity decomposition described in Part I is now

extended to the silica structures.

The HCACF of the silica structures cannot be fitted

with the sum of two exponential decays as used for the

LJ argon fcc crystal. The oscillations in the HCACF

suggest that looking at its Fourier transform may help in

extending the model. There are between four and ten

well defined peaks in the HCACF spectra of the four

crystals (not shown). The peak locations are in the
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Fig. 2. Time dependence of the HCACF [(a) and (b)] and its integral [(c) and (d)] (whose converged value is the thermal conductivity)

for quartz(a) at T ¼ 250 K and quartz(c) at T ¼ 200 K.
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infrared region of the electromagnetic spectrum. Based

on phonon dispersion curves calculated from the zero

temperature configuration of the four crystals (not

shown), the peak frequencies correspond to optical

phonons. For each structure, the spectrum is similar to

the infrared spectrum determined from MD (which is

related to the dipole moment). This is likely due to the

strong contribution of the electrostatic term in the force

and energy calculations in the heat current [see Eq. (6) of

Part I]. There are more optical phonon modes than

peaks for all four crystals, which indicates that it is only

the infrared active modes that contribute to the thermal

conductivity. The spectra are also in qualitative agree-

ment with the infrared spectra found for zeolites in

previous MD simulations [37,38]. There are some dis-

crepancies in the peak heights and locations, which may

be a result of the different interatomic potentials used. A

significant amount of research has been done to relate

the infrared spectra of zeolites to their structural fea-

tures (i.e., bond lengths, angles, SBUs, etc.) [38–41].

While some general guidelines have been suggested, no

definitive interpretations of the spectra have been

established.
Based on these observations and the results of Part I,

the HCACF for the silica crystals is decomposed as
hqðtÞ � qð0Þi
3

¼ Aac;sh expð�t=sac;shÞ þ Aac;lg expð�t=sac;lgÞ

þ
X
i

Bop;i expð�t=sop;iÞ cosðxop;itÞ; ð5Þ
so that, from Eq. (4)

k ¼ 1

kBVT 2
Aac;shsac;sh

 
þ Aac;lgsac;lg þ

X
i

Bop;isop;i
1þ s2op;ix

2
op;i

!

� kac;sh þ kac;lg þ kop: ð6Þ

The s terms are time constants and the A and B coeffi-

cients represent the strength of a given mode. The sub-

scripts ac, sh, lg, and op refer to acoustic, short range,

long range, and optical, respectively. This procedure is

not suitable for the amorphous phase, where there are



Table 3

Thermal conductivity decomposition for quartz(a) at T ¼ 250

K

Component s (ps) x=2p (THz) k (W/mK)

Short range

acoustic

0.016 – 1.143

Long range

acoustic

2.37 – 9.494

Optical

1 3.19 14.2 0.087

2 1.65 18.3 0.436

3 2.50 21.6 0.052

4 1.24 22.8 0.242

5 2.82 32.8 0.070

0.887

Total 11.524

The time constant for the short range acoustic phonon com-

ponent is obtained from the energy correlation analysis.
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no sharp peaks in the HCACF spectra. Its thermal

conductivity is specified directly from the integral of the

HCACF.

The decomposition is the same as equations (15) and

(16) of Part I, with the addition of the third term, which

accounts for the optical phonons with exponentially

decaying sinusoids. The summation in the third term is

over the peaks in the HCACF spectrum at angular fre-

quency x. As described in Part I, the first term, kac;sh,
corresponds to short wavelength acoustic phonons with

mean free paths equal to one half of their wavelength.

This is the minimum value of the mean free path as

described in the Cahill–Pohl (CP) high scatter limit

[42,43], discussed in Section 1 of Part I. The time con-

stant sac;sh indicates how long it takes energy to transfer

from an atom to a nearest neighbor atom. The second

term, kac;lg, which we have associated with acoustic

phonons with longer mean free paths, has a longer time

constant.

The fitting of the sum of two exponential decays to

the LJ argon fcc crystal HCACF is a straightforward

task using a mathematical software package such as

Mathematica (used here for all calculations). The task of

fitting the silica HCACFs to a function of the form of

Eq. (5), which requires up to 34 unknowns (for the case

of FAU), is not trivial. The general procedure is outlined

next.

The terms in the optical summation are individually

fitted using the imaginary part of the Fourier transform

of the HCACF. Overlapping peaks are fitted together.

Visually, the total optical component gives an excellent

fit to the raw HCACF in the time domain. When the fit

is subtracted from the raw data, the remaining signal

appears to be noise. It is not until the integration of Eq.

(4) is performed that the behavior represented by the

first two terms of Eq. (5) becomes apparent. The fit of

the short and long range acoustic modes is made on the

integral. The appropriate function is found by inte-

grating Eq. (5) to a limit of t as opposed to infinity. The

fitting algorithm requires initial guesses for each

parameter. Different choices for Aac;sh and sac;sh result in

a consistent value of Aac;shsac;sh [as found in Eq. (6)], but

do not give unique values for the individual parameters.

This occurs because the value of sac;sh is small and

Aac;sh=Bop;i is of order 0.01, so that Aac;sh is on the same

order as the noise in the HCACF after the optical fit has

been subtracted. To specify sac;sh, the energy correlation

analysis described in Section 4.2 of Part I is used. The

values obtained are around 0.015 ps. This is smaller than

the values near 0.26 ps found for the LJ argon struc-

tures, and is a result of the higher frequencies available

to phonons in the silica structures. There is no difficulty

in the specification of Aac;lg and sac;lg. The fit integral is

shown in Fig. 2(c) and (d). The results for the decom-

position of the quartz(a) HCACF at a temperature of

250 K are given in Table 3.
The thermal conductivities predicted by the decom-

position of Eq. (6) and the values obtained from the

direct specification of the integral agree to within 5% for

all cases considered except quartz(c) at 100 K ()13.8%),

FAU at 100 K (+8.7%), and LTA at 100 K (+15.6%)

and 150 K (+9.7%). These cases all correspond to low

temperatures, where long convergence times can make

the direct specification of the integral ambiguous, even

when using the methods described in Section 4.1. Based

on these results, the error in the thermal conductivity

predictions is taken as ±5%.

4.3. Thermal conductivity results

In Fig. 3(a), the predicted thermal conductivities of

the four crystals are plotted as a function of tempera-

ture. Only quartz data in the c-direction are shown.

Least squares power law fits are added for the three

zeolites to guide the eye. Also shown are experimental

data for quartz(c) and amorphous silica [44], and the

predictions of the CP high scatter limit for amorphous

silica. As discussed in Section 5.2.4 of Part I, the CP

limit is a quantum model, while the MD simulations are

classical. In Fig. 3(a), the quantum formulation of the

CP limit is plotted to allow for comparison with the

experimental amorphous silica data. All numerical data

[including quartz(a)] are given in Table 4.

The predicted quartz(c) thermal conductivities are

within ±25% of the experimental values. The quartz(a)
results over predict the experimental data by an average

of 40%. This is a good result for an MD simulation, and

gives confidence to the use of the BKS potential for

modelling thermal transport in silica structures. The CP

limit falls below all of the experimental and MD results.

There is minimal experimental or computational data

available for zeolite thermal conductivity. Murashov [45]
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has predicted the thermal conductivity of LTA and FAU

using the BKS potential and a non-equilibrium MD

method. There is significant scatter in the limited results,

suggesting that not enough data were generated to give a

good statistical average. The current MD calculations

for LTA are in reasonable agreement with Murashov’s

results, while our FAU values are higher. Griesinger

et al. [46] have measured the effective thermal conduc-

tivity of zeolite powders with various filling gases. For

zeolite NaA (the LTA structure with some aluminum

atoms replacing the silicon atoms in the cages and guest

sodium atoms), fitting the experimental data with a

network model gives a bulk thermal conductivity of

3.3 W/mK at a temperature of 423 K.

The predicted thermal conductivities for the three

amorphous phases are shown in Fig. 3(b), along with the

experimental data [44] and the CP limit (both the
quantum and classical forms are shown). In the CP limit

calculations, the density and speed of sound are taken

from the experimental data, and assumed to be inde-

pendent of temperature for both curves. For the classical

curve, the specific heat is taken as the classical harmonic

value. The variation due to anharmonicities in the MD

simulations is found to be only a few percent over the

temperature range studied.

The agreement of the thermal conductivities of the

three MD amorphous silica phases is good, indicating

that the simulation cells are fully disordered. Thermal

conductivity predictions for the amorphous phase at the

experimental density (not shown) were not distinguish-

able from those given here within the numerical uncer-

tainty. Further discussions and calculations will use an

average of the results unless noted. The amorphous sil-

ica predictions are 40–110% higher than the experi-

mental data. The temperature trend is the same, and the

agreement improves as the temperature is increased.

Using a direct application of the Fourier Law of heat

conduction in an MD simulation (known as the direct

method, see Section 2 of Part I) with the BKS potential,

Jund and Jullien [30] have predicted the thermal con-

ductivity of amorphous silica. In the temperature range

of 100–400 K, their results agree with experimental data

to within ±20%. Based on the results of Part I for

amorphous LJ argon, no size effects are expected for the

amorphous silica phase. Jund and Jullien did not con-

sider any size effects in their predictions, which are

generally important in the application of the direct

method, and lead to an underprediction of the thermal

conductivity. Thus, had Jund and Jullien included size

effects, it is possible that their predictions would come

into agreement with ours, indicating that the BKS po-

tential is only somewhat suitable for modeling of the

amorphous silica phase.

The temperature dependence of the amorphous phase

thermal conductivity is often associated with the tem-

perature dependence of the specific heat, which is a

quantum effect (in the classical, harmonic limit the

specific heat is constant). However, as found here and by

others [30,47], classical MD simulations of amorphous

materials, where the specific heat is approximately con-

stant, generate temperature dependent thermal conduc-

tivities. This surprising result, which indicates that the

positive temperature dependence of the amorphous sil-

ica phase thermal conductivity is not purely a quantum

effect, warrants further investigations. It has been sug-

gested that the positive temperature dependence is a

result of the coupling of anharmonicity and disorder

[48,49]. The description of amorphous phase lattice

vibrations in terms of diffusons, locons, and propagons,

as suggested by Allen et al. [50], may be a suitable place

to start.

The absolute value and temperature dependence of

the thermal conductivities decrease from quartz to SOD



Table 4

The predicted thermal conductivities from the MD simulations

Structure Quartz(c=a) SOD FAU LTA AS

T (K) k (W/mK)

100 31.2/27.5 6.82 3.29 1.72 1.46

[39/20.8] [1.4] [1.2] [0.7]

150 23.2/17.4 5.02 2.71 1.70 1.67

[23.1/13] [1.0]

200 16.2/13.2 4.49 2.28 1.58 1.83

[16.4/9.5] [1.3] [1.5] [1.1]

250 15.7/11.5 3.91 2.18 1.66 1.87

[12.7/7.5] [1.3]

300 11.7/8.6 3.53 2.07 1.68 1.96

[10.4/6.2] [0.6] [1.3] [1.4]

350 10.8/8.10 3.09 2.00 1.61 2.04

[8.8/5.3] [1.4]

The numbers in square brackets under the quartz and amorphous silica data correspond to experimental values from Ref. [44]. The

numbers in square brackets under the FAU and LTA data are the MD results from [45]. Those simulations also predict quartz thermal

conductivities of 16/8.2 W/mK at T ¼ 300 K.
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to FAU to LTA. The introduction of lattice pores has

reduced not only the thermal conductivity, but also its

temperature dependence. The same phenomenon has

been observed in germanium-based structures [36]. Both

directions for quartz, SOD, and FAU show the expected

decrease in the thermal conductivity above one-tenth of

the Debye temperature [51], which for quartz is 290 K

[52]. We assume that the zeolites have a comparable

value. For LTA, all of the calculated thermal conduc-

tivities are within a range of 0.14 W/mK, which ap-

proaches the resolution of the predictions. A slight

decrease in the thermal conductivity over the tempera-

ture range considered is discernable.

A possible interpretation of the decreasing tempera-

ture dependence of the thermal conductivity of the

crystal structures is that the thermal transport mecha-

nism is changing to that which exists in the amorphous

phase (i.e., the mean free path of all phonons is

approaching its minimum value). However, it appears as

though the crystal curves are approaching a temperature

independence, and it is unclear if a transition to a po-

sitive temperature dependence will occur. Thus, the ef-

fect of a high phonon scattering rate (a short mean free

path) appears to be different in the crystalline and

amorphous phases. This point will be further addressed

in Section 4.4.

The thermal conductivity trend between the struc-

tures can be qualitatively interpreted in terms of the

overall stiffness of each one. With its high density,

quartz will be the stiffest. For the zeolites, consideration

of the joining mechanisms between the sodalite cages

suggests that SOD (where the cages are directly at-

tached) will be the stiffest, followed by FAU (where the

oxygen bridges contain six elements), and then by LTA

(where the oxygen bridges contain four elements). The
thermal conductivities are consistent with this explana-

tion.

In Fig. 4(a)–(d), the decompositions of the thermal

conductivities of quartz(c), SOD, FAU, and LTA, based

on Eq. (6), are shown. For all cases, both the optical

phonon and short range acoustic phonon contributions

are of order 1 W/mK and independent of temperature.

This temperature independence has been noted for the

short range acoustic phonon modes in LJ argon [16,34].

For each structure, the optical contribution falls within

a range of ±0.08 W/mK, while the short range acoustic

phonon contribution falls within a range of ±0.18 W/

mK. The only exceptions to this are the short range

acoustic phonon modes for quartz(c) at temperatures of

100 and 150 K. Here, the short range acoustic phonon

mode contribution is 0.5 W/mK lower than at the higher

temperatures. We attribute this discrepancy to the dif-

ficulty in performing the fit of the HCACF when the

thermal conductivity is high (kac;sh=k is of order 0.05 in

these two cases).

Che et al. [35] studied diamond at a temperature of

300 K over a range of simulation cell sizes, using a

model containing our kac;sh and kac;lg terms. The total

thermal conductivity is found to be 1200 W/mK (the

experimental value is 2300 W/mK). Their term corre-

sponding to our kac;sh is independent of the simulation

cell size, and equal to 1.8 W/mK. This is the same order

as kac;sh in the silica structures. No effects along the lines

of our kop are evident (i.e., large oscillations in the

HCACF), even though the diamond structure has

optical phonons. Based on our observation of kop being

of order 1 W/mK, not including this was justified in

their case. However, when the total thermal conductivity

is on the order of 1 W/mK, as with the zeolites, the

optical phonon contribution cannot be ignored.
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The magnitude and temperature dependencies of the

thermal conductivities of the four crystals are primarily

differentiated by the kac;lg term. From the trends shown

in Fig. 4, it appears as though the long range acoustic

phonon modes are being inhibited in the zeolites (i.e.,

the mean free path of all phonons is approaching the

limiting value of one half wavelength). The associated

time constants, sac;lg, for the four crystals are of the same

order at a given temperature, and are thus not enough to

distinguish the wide range of kac;lg. The crystal structure
must be taken into account to explain the trends.

4.4. Thermal conductivity limits in crystals

Low thermal conductivity in silica structures is

achieved by reducing the phonon mean free path. This

can be accomplished in three ways: increasing the tem-
perature [seen in Fig. 3(a)], introducing disorder (as

found in the amorphous phase), or by creating a crystal

structure that scatters phonons over a short length scale.

It is the last mechanism that is present in the zeolites,

and this is explored in the next two sections. The effects

of disorder and crystal structure are shown in Fig. 5(a),

where MD predicted and experimental thermal con-

ductivities of silica structures at a temperature of 300 K

are plotted as a function of their densities. The density is

limited by the requirement of a stable crystal structure.

For the zeolites, FAU is the most open framework

possible. Further reduction in the thermal conductivity

requires breaking the lattice periodicity (e.g., with de-

fects or imperfections) or the introduction of bulk

porosity (e.g., silica aerogel). There will be an accom-

panying loss in strength and lattice periodicity, which

may make such materials undesirable.
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Optical phonon modes typically have close to flat

dispersion curves and therefore, low group velocities.

Thus, while the time constants of the optical phonon

modes in the thermal conductivity decomposition are

longer than that of the short range acoustic phonons,

the distance over which they are effective may be com-

parable. The temperature independence of both of these

components suggests that they should be considered

together. When the sum of kac;sh and kop (referred to

hereafter as kac;shþ op) is calculated for each of the crys-

tals, the values obtained increase with increasing density,

and are consistent with the scale of the amorphous phase

predictions at higher temperatures. Temperature aver-

aged thermal conductivity results are plotted against the

density at a temperature of 300 K in Fig. 5(b). Also
shown are the amorphous silica results and the CP limit

under the assumption of a density independent speed of

sound. The quartz values correspond to an average of

the c-direction value and twice the a-direction value. The

kac;sh values are close to the thermal conductivities pre-

dicted by the CP limit, supporting the equivalence of the

two terms as suggested in Section 5.2 of Part I. The

inclusion of kop gives a significantly higher value than

kCP. Note that the trend in the kac;shþ op values is not the

same as the total thermal conductivity trend (LTA has a

higher density than FAU, but a lower total thermal

conductivity).

To further understand the kac;shþ op trend, the crystal

structure of the five materials can be investigated using

the concept of the coordination sequence (CS) [53]. The

CS of a material describes the environment seen by one

of its constituent atoms. For silica structures, only the

silicon atoms are considered. For each of the crystals,

each silicon atom is equivalent to all others within that

structure. The first three terms in the CS for the five

silica structures are given in Table 5. For quartz, the CS

is 4–12–30. This means that each silicon atom has four

nearest neighbor silicon atoms. The total number of

distinct neighbors of those four atoms (not including

any double counting of atoms from previous stages) is

twelve, and so on. The amorphous result is based on

structure 1 (see Table 2) and takes an average of the CS

of each silicon atom. The fact that the first term is 3.99

results from not all the atoms having the proper co-

ordination (see Table 2).

The trend in the CSs towards fewer neighbors is

consistent with the kac;shþ op trend. In Part I, it was found

that the kac;sh value for the fcc LJ argon crystal does not

change over a large density range (see Table 1 of Part I).

The analysis here explains why this is so. It is not the

density that affects this component of the thermal con-

ductivity, but the crystal structure, which for argon was

always an fcc crystal. Thus, while the value of the time

constant sac;sh changes with the density (which affects the

nearest neighbor separation), kac;sh remains constant

because there are always 12 nearest neighbors.

At the higher temperatures, the amorphous results

qualitatively fit the CS trend. However, there is a tem-

perature dependence not seen in the crystals. The ques-

tion then arises of how to resolve the temperature

dependence of the amorphous data with the temperature

independence of the kac;shþ op terms. What these results

suggest is that the mechanisms limiting thermal trans-

port in the crystal phase are not the same as those in the

amorphous phase. That being said, the CP limit may not

be a suitable tool for modeling the lower limits of

thermal conductivity in crystals. While it is able to

capture the temperature dependence and magnitude of

amorphous results, it is not able to capture what we have

identified as structure dependent limits in crystals, or the

effect of optical phonons. To formulate a crystalline



Table 5

A number of different comparisons between the structures

Structure Quartz(c=a) SOD FAU LTA AS

k (W/mK) 16.2/13.2 4.49 2.28 1.58 1.83

kac;lg (W/mK) 13.4/11.5 2.75 1.23 0.37 –

kac;shþ op (W/mK) 3.36/1.93 1.73 1.05 1.21 –

sac;lg (ps) 3.59/2.63 1.67 3.22 1.49 –

Coordination sequence 4–12–30 4–10–20 4–9–16 4–9–17 3.99–11.3–25.2

scage (ps) – 0.67 1.35 1.72 –

Spread of Si–O bond

lengths in equilibrium – 0 0.017 0.026 –

tetrahedron (�AA)

Mean deviation of O–Si–O

angles in equilibrium – 3.6 2.1 1.7 –

tetrahedron (�)

Temperature dependent data at T ¼ 200 K.
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minimum thermal conductivity model, specific details

about the structure must be considered (e.g., the CS).

The atomic species present will also be important, as

is evident from the result that the kac;sh value for argon is

of order 0.1 W/mK, compared to order 1 W/mK for

the silica structures.

The concept of the short length scale behavior rep-

resenting a thermal conductivity limit can be further

investigated by considering the MD results of Li et al.

[32] for b-silicon carbide. The introduction of point de-

fects to the system results in a faster decay of the

HCACF, and a significantly lower, temperature inde-

pendent thermal conductivity. This is consistent with a

reduction in kac;lg, as observed in the current simulations

as a result of the cage structure of the unit cells. In the

work of Li et al., it is a result of the loss of periodicity

that is brought about by defects. In both cases, what

remains is a temperature independent thermal conduc-

tivity. Similar results related to defects have been found

in MD studies of diamond [35] and yttria-stabilized

zirconia [54].

The results of this section have allowed for an

interpretation of the relative magnitudes of the kac;sh and
kop components of the thermal conductivity. However,

the mechanism by which long range effects in the zeolites

are inhibited (i.e., the large reduction in kac;lg compared

to quartz) has not been addressed. This is considered

next.

4.5. Atomic structure and thermal conductivity

In Part I, the time constant sac;lg was associated with

acoustic phonons with a mean free paths greater than

one half of their wavelength. In argon, the values of sac;lg
were consistent with the temperature trend of kac;lg.
While this holds within each of the silica crystals, it is

not sufficient to understand the trends between struc-

tures at a given temperature (i.e., the sac;lg time constants

are not consistent with the kac;lg values between struc-
tures, as given in Table 5 at a temperature of 200 K). To

explain this phenomenon, we believe that additional

time scales, associated with the localization of energy on

the sodalite cages in the zeolites, are being manifest in

the HCACF. This idea is investigated in this section

using a series of real-space (as opposed to phonon-

space) analysis techniques. Note that we are not refer-

ring to localization in the context of a specific phonon

mode (as is often discussed with respect to amorphous

materials), but in the context of the overall spatial

localization of energy that may result in a crystal

structure that quickly scatters phonons.

Energy autocorrelations for the sodalite cages in the

three zeolites have been formed. The normalized results

for FAU are shown in Fig. 6(a). Along with the expected

sac;sh scale, which is present in all the energy correlations

investigated, there is a clear secondary scale, shown as

scage. The value of scage for the three zeolites, calculated

based on an average over 8 ps, are given in Table 5. The

increasing magnitude of scage from SOD to FAU to LTA

is consistent with the decreasing kac;lg among these

structures. We interpret this time scale as representing a

localization of energy on the sodalite cages. It is this

phenomenon that results in the zeolites having signifi-

cantly lower thermal conductivities than quartz.

To gain further insight into the localization of energy

on the sodalite cages, energy correlations between

nearest neighbor silicon atoms in each of the structures

are considered. In each of the quartz and SOD struc-

tures, all oxygen atoms have an equivalent environment,

so that there is only one type of Si–Si pair. This is not

the case for LTA and FAU, where there are distinct

oxygen positions (3 and 4, respectively). These are

shown in Fig. 7, where the distinct oxygen positions in

each structure are identified by different colors. There is

no order in the amorphous structure outside of a given

tetrahedron.

The significant results of the energy correlations are

given in Fig. 6(b) and (c). The curves are normalized
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against the zero-time amorphous silica value. The energy

correlation contains three parts. There is an initial intra-

tetrahedron portion [A in Fig. 6(b)], followed by a period

over which adjoining tetrahedra come into phase and

subsequently uncorrelate [B in Fig. 6(b)]. The third re-

gion (not shown) is a result of the periodic boundary

conditions, and represents energy that has passed

through the simulation cell and returned to its origin.

The peaks in the correlations are separated by 2sac;sh (the
time needed for energy to go across two Si–O bonds).

The structures are distinguished by the second regime.

The results for quartz, SOD, and the amorphous silica

phase are shown in Fig. 6(b). Consider the amorphous

phase, where the absence of long range order prevents

any significant coherence from developing, as a basis for

comparison. In the quartz structure, the second regime
contains a plateau. This allows coherence to develop

between many subsequent tetrahedra, facilitating the

flow of heat and resulting in a high thermal conductivity.

In SOD, there is also an increased correlation compared

to the amorphous phase, but it does not last as long

as that in quartz. The thermal conductivity falls below

the quartz value, but above the amorphous result.

The results for LTA are shown in Fig. 6(c), along

with the amorphous silica curve. The O1 and O3 posi-

tions (see Fig. 7) show a lower correlation than that of

the amorphous structure over much of the time up to

200 fs. The O2 position shows an even larger correlation

than that in quartz. In particular, the O1 correlation is

close to zero in a number of regions. This is the oxygen

associated with the bridge between the sodalite cages,

indicating that it is very difficult for energy to flow along



Fig. 7. Structure of the three zeolites near the linking of their sodalite cages. Bond lengths and angles correspond to T ¼ 200 K: (a)

SOD; (b) FAU, and (c) LTA.
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that path. The only option for the energy is to flow over

the O2 or O3 atoms, the latter of which also offers a

strong resistance to the energy flow. This leads to a

strong localization of energy on the Si–O2–Si subunit.

Energy will go back and forth over the O2 atoms, and

strong long range coherence cannot be established.

Accordingly, LTA is found to have the lowest thermal

conductivity and kac;lg of all the crystals. For the FAU

structure, a similar behavior is observed for the Si-Si

correlations, although not as severe. In this case, it is

also the bridge oxygens that most restrict the flow of

heat, leading to a localization of energy on the sodalite

cage. FAU has the second lowest thermal conductivity

and kac;lg.
Having identified what is happening to inhibit the

propagation of acoustic phonons over long length scales,

the question turns to how the crystal structures bring

about this effect. To do so, static and dynamic atomic

level descriptions of the crystals will be considered.

In Fig. 7, the structure of each of the zeolites around

the connections between sodalite cages is shown, along

with the equilibrium bond lengths and angles. Portions

of SBUs are marked, as is the location where the energy

localization takes place in FAU and LTA. For the SOD

structure, the equilibrium system is metastable, and

oscillates between two equivalent states which have

slightly distorted sodalite cages. The numbers in brack-

ets below the data corresponding to the Si-O1–Si/Si–O2–
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Si and O1–Si–O2 bond angles are time averaged values,

while the given data correspond to the values within one

of the two states.

While the zeolites considered are distinguishable

based on their unit cells, they can also be characterized

by the local environment of each silicon atom. In Table

5, the mean deviation of the angles in a tetrahedron for

each of the zeolites is given based on the average bond

angles at a temperature of 200 K. Also included is the

equilibrium spread of the bond lengths at this temper-

ature. As the distortion increases, the value of kac;lg de-

creases. As quartz and amorphous silica do not contain

sodalite cages, they are not included in this analysis.

Murashov [45] has investigated the thermal conductivity

of LTA when some of the silicon atoms are replaced

with other species. These replacements lead to a distor-

tion of the tetrahedra (which is shown using radial dis-
Fig. 8. Total and direction dependent rms displacements for the atom

(b) LTA.
tribution functions) and an accompanying decrease in

the thermal conductivity. Here, we see that the crystal

structure itself can have the same effect.

In the FAU and LTA structures, the energy locali-

zation takes place on a Si–O–Si bond on the 6R SBU. In

SOD, the overlapping of the cages makes the corre-

sponding bond a part of another cage link, preventing

the localization from developing. This is the largest Si–

O–Si bond in each of the FAU and LTA structures, with

values of 160.1� and 166.6�, respectively. This suggests

that large bond angles may contribute to the localiza-

tion. In quartz, all the Si–O–Si bonds have a magnitude

of 148.2�, consistent with this argument.

The equilibrium geometries give the static properties

of the lattices. The dynamics can be investigated by cal-

culating root mean square (rms) displacements of indi-

vidual atoms. In Fig. 8, the total and direction dependent
s in the quartz and LTA structures at T ¼ 200 K: (a) quartz and
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rms displacements are shown for quartz and LTA at a

temperature of 200 K. The oxygen atoms in LTA are

distinguished using the same color scheme as in Fig. 7. In

quartz, the two views are linked through the atom iden-

tifiers �a’ to �i’. The number below the species identifier is

the total rms displacement in picometers. There are two

numbers associated with each atom in the structure. The

top number is the horizontal rms displacement for the

orientation shown, and the bottom number is the vertical

rms displacement. Two orthogonal views are shown to

give the full three dimensional description.

In general, smaller atomic motions correspond to less

anharmonic interactions and an expected higher thermal

conductivity. The total rms of the atoms in LTA are

larger than those in quartz, and LTA has a lower ther-

mal conductivity, consistent with this description. The

anisotropies in the directional rms values for LTA are

significantly larger than those in quartz. This increased

anisotropy is consistent with idea of local distortion

leading to an inhibition of the development of long

length scale correlations, and a lower kac;lg.
5. Summary

The thermal conductivity decomposition introduced

in Part I for LJ argon has been extended to model silica

crystals. As shown in Fig. 4, the optical phonons present

due to the multi-atom unit cells make a non-negligible

contribution to the thermal conductivity when the total

value is 10 W/mK or lower. The full decomposition is

suitable for the analysis of any dielectric crystal.

The range of silica-based crystals available has al-

lowed for insight to be gained into how heat is trans-

ferred in these materials. Two mechanisms have been

identified. The first, which is short range and linked to

optical phonons and short wavelength acoustic pho-

nons, is related to the geometry of the crystal structure.

The resulting thermal conductivity, shown in Fig. 5(b),

is temperature independent, and has been interpreted as

a minimum value for the crystal phase. This limiting

value is different from that predicted by available models

based on a disordered structure. The second mechanism

corresponds to the long time propagation of acoustic

phonons within a crystal. It accounts for the tempera-

ture dependence and majority of the magnitude of the

thermal conductivity. The establishment of long time

scale behavior is linked to the smallest scales of the

crystal structure. Distortion of the SiO4 tetrahedra can

result in an inhibition of long range modes and a spatial

localization of energy on the sodalite cages, as found in

the zeolites (see Figs. 6–8).

In the design of new porous crystals with desired

thermal properties, a number of guidelines can thus be

suggested. When comparing to a similar dense phase, the
thermal conductivity of the porous crystal will be lower

due to the possibilities for energy localization on the

cages. The amount of reduction is dependent on the

structure of the cage, and to what extent it distorts small

scale features such as bond lengths and angles. The size

of the cage is not necessarily the limiting factor. This

localization is able to almost completely eliminate long

range coherence from developing in the crystals, as seen

in LTA. However, there is an additional limit imposed

by the crystal structure, related to the spatial distribu-

tion of atoms. The limiting thermal conductivity is re-

lated to the number of independent paths that energy

can flow through from a given atom. The fewer the

paths, the lower the thermal conductivity. This is not

directly a density effect, but is related to the coordina-

tion of the atoms.
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